令和3年度 希少感染症技術研修会

腸炎ビブリオ及び Vibrio属菌

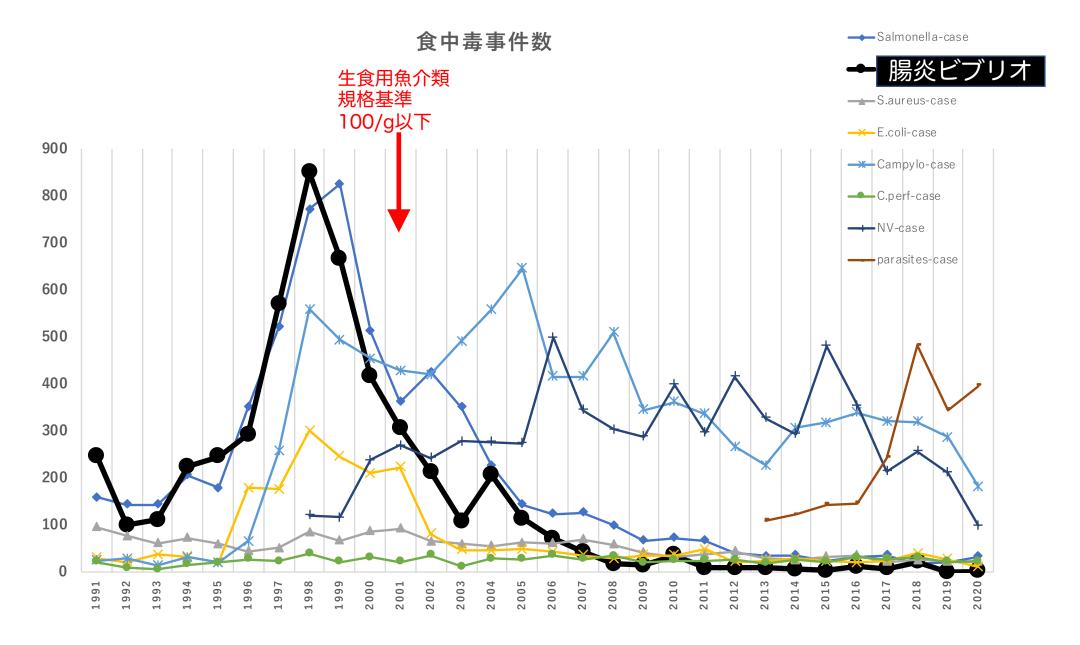
令和4年2月18日 細菌第一部 荒川英二

ヒトから分離されるVibrio属菌

主に下痢症から分離 ► V. parahaemolyticus V. cholerae V. metoecus ► V. parilis ► V. paracholerae ► V. mimicus V. fluvialis/V. furnissii 主に敗血症から分離 V. vulnificus V. hollisea (G. hollisea) V. damselae (P. damselae) V. metschnikovii > V. alginolyticus V. cincinatiensis V. harveyi

ヒトに対し非病原性の Vibrio属菌

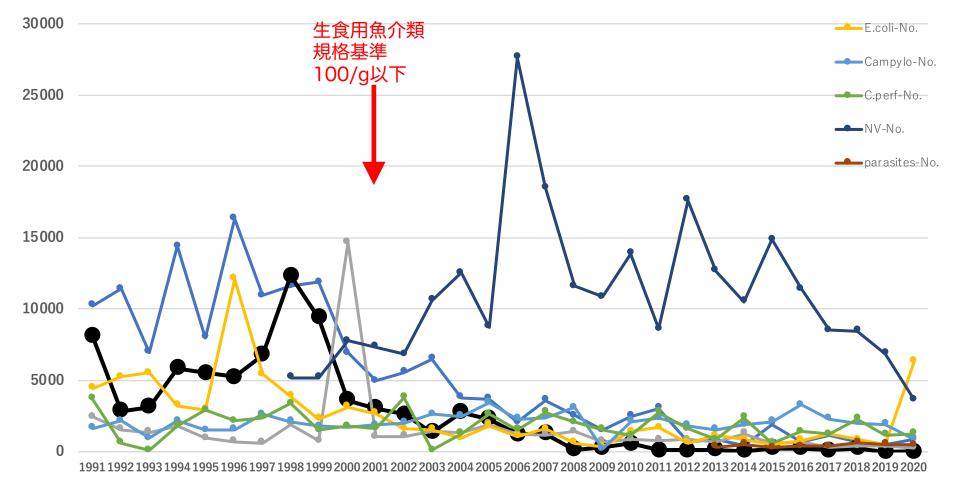
Vibrioi属菌(*Vibrionaceae*)として、世界中で190種 類以上が提案されている。


しかし、そのほとんどは海洋環境あるいは魚介類か らの分離で、ヒトに対する病原性も認められていな い。

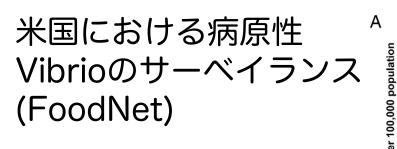
> 「ビブリオの多様性と進化」 澤 辺 智 雄

日本細菌学雑誌 65(3):333-342,2010

種名	分離源・種提案年
V. aerogenes	台湾, ナンワン湾, 海泥, 2000
V. aestuarianus	アメリカ・オレゴン, カキ, 1983
V. agarivorans	スペイン, 海水, 2001
V. areninigrae	韓国・済州島,黒砂,2008
V. atypicus	中国,コウライエビ消化管
V. azureus	日本沿岸・黒潮・相模湾,海水,2009
V. brasiliensis	ブラジル,ホタテ幼生,2003
V. breoganii	スペイン, アサリ, 2009
V. casei	フランス,熟成ソフトチーズ表面
V. chagasii	ノルウェー, ヒラメ消化管, 2003
V. comitans	神奈川, アワビ消化管, 2007
V. cyclitrophicus	アメリカ,炭化水素汚染海泥,2001
V. diabolicus	東太平洋海膨,多毛類外被,1997
V. diazotrophicus	カナダ・ノバスコシア,ウニ,1982
V. ezurae	神奈川, トコブシ消化管, 2004
V. fortis	エクアドル,エビ幼生,2006
V. gallicus	フランス, トコブシ消化管, 2004
V. gazogenes	アメリカ,塩性湖沢底泥,1980
V. gigantis	フランス,カキ血リンパ,2005
V. halioticoli	熊石, アワビ消化管, 1998
V. hangzhouensis	中国・東シナ海, 海底堆積物, 2009
V. hepatarius	エクアドル,エビの消化腺,2003
V. hispanicus	スペイン, アルテミア・海水, 2004
V. ichthyoenteri	広島, 死亡ヒラメ消化管, 1996
V. inusitatus	アメリカ, アワビ消化管, 2007
V. inusitatus	フランス,死亡カキ幼生,2003
V. kanaloaei	スペイン,カキ,2001


厚生労働省食中毒統計(1991-2020)

食中毒患者数


➡_Salmonella-No.

----S.aureus-No.

厚生労働省食中毒統計(1991-2020)

С

В All test methods Culture-confirmed CIDT+ only 1.2 infections 25% 1.0 20% 0.8 spp. 15% 0.6 Vibrio per 0.4 10% 5 0.2 Incidence Percentage 5% 2015 2016 2018 2019 0% 966 005 2010 2012 2013 2017 998 666 000 2001 002 003 004 000 008 600 2014 997 007 2011 August enterner october woverner D V. hollisae Other Vibrio spp. **population** 9.0 V. mimicus population V. fluvialis 0.6 Vibrio (not speciated) 0.5 5.9% V. cholerae (toxigenic and non-toxigenic) 100,000 100,000 0.3 0.4 V. parahaemolyticus V. vulnificus per per 91% Incidence Incidenc Male V. alginolyticus <5 5-9 10-19 20-64 65+ Age Group Sex CIDT (not speciated)

Fig. 1. Pathogen surveillance of infections caused by pathogenic *Vibrio spp.*, 1999–2019 (CDC, 2021). Graphs were created using the Foodborne Diseases Active Surveillance Network (FoodNet) Fast to display data for *Vibrio* infections. Where indicated, data are presented as number of infections per 100 000 population at FoodNet sites, which cover 10 states and *ca*. 15% of the United States population. A. *Vibrio* infections by year.

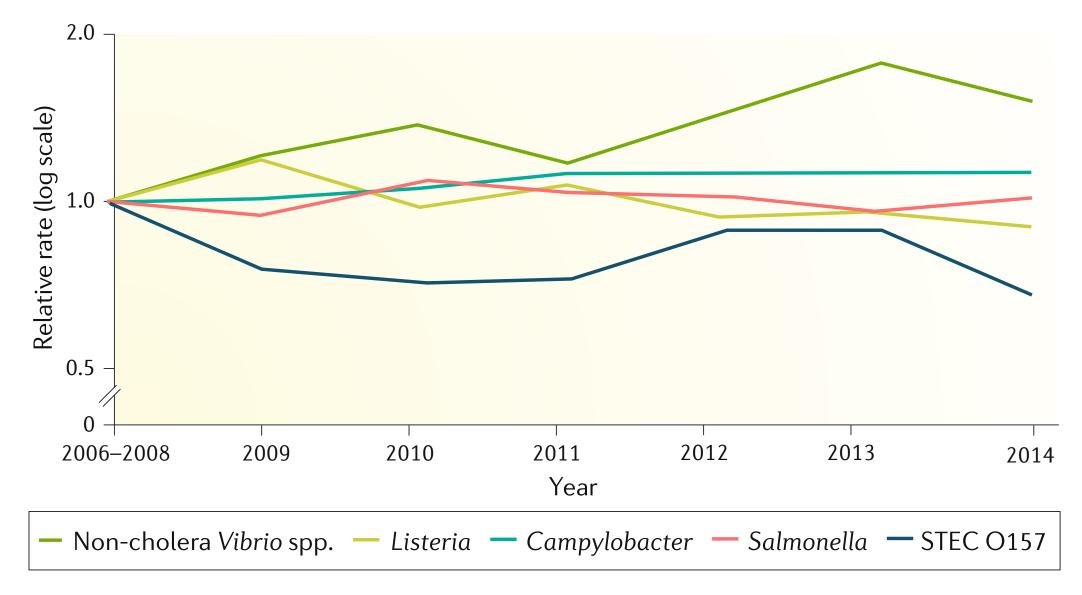
Shown is the incidence of infections caused by pathogenic *Vibrio spp*. Teal, all test methods; gold, culture confirmed, including those infections confirmed by culture only or by culture following a positive culture-independent diagnostic test (CIDT); purple, CIDT only.

B. Infections caused by pathogenic Vibrio spp. presented by month.

Shown are monthly percentage of infections across all reported cases.

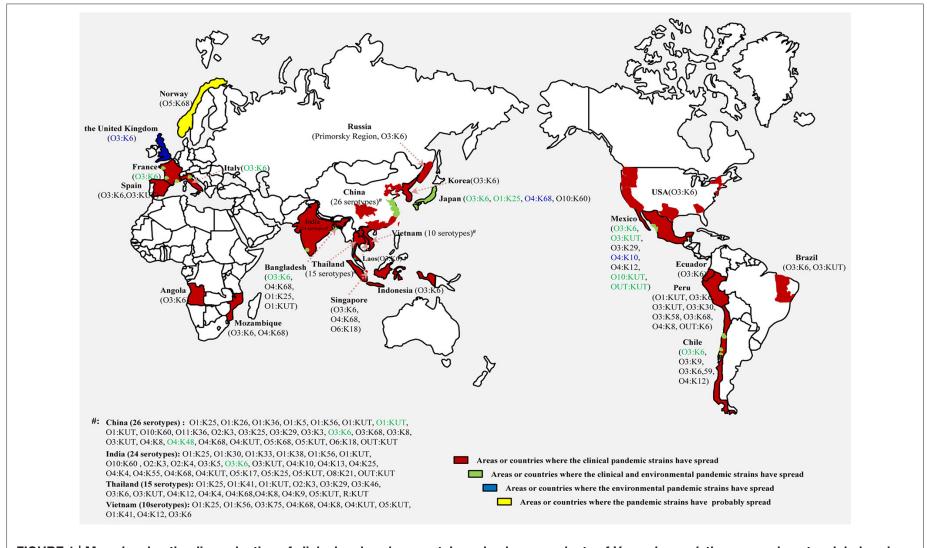
Vibrio spp. Infections; 1996-2019

C. Distribution of infections caused by pathogenic Vibrio spp.


Shown are percentage of infections caused by pathogenic Vibrio spp. across all reported cases. CIDT, culture-independent diagnostic test.

D. Demographics of infections caused by pathogenic Vibrio spp.

The annual average incidence of infections is shown by age (left) and sex (right). [Color figure can be viewed at wileyonlinelibrary.com]


Brumfield KD, et al. Environ Microbiol 2021 23(12):7314-7340

米国で報告された食品由来感染症の推移

Baker-Austin C, J. Nat Rev Dis Primers. 2018 Jul 12;4(1):8.

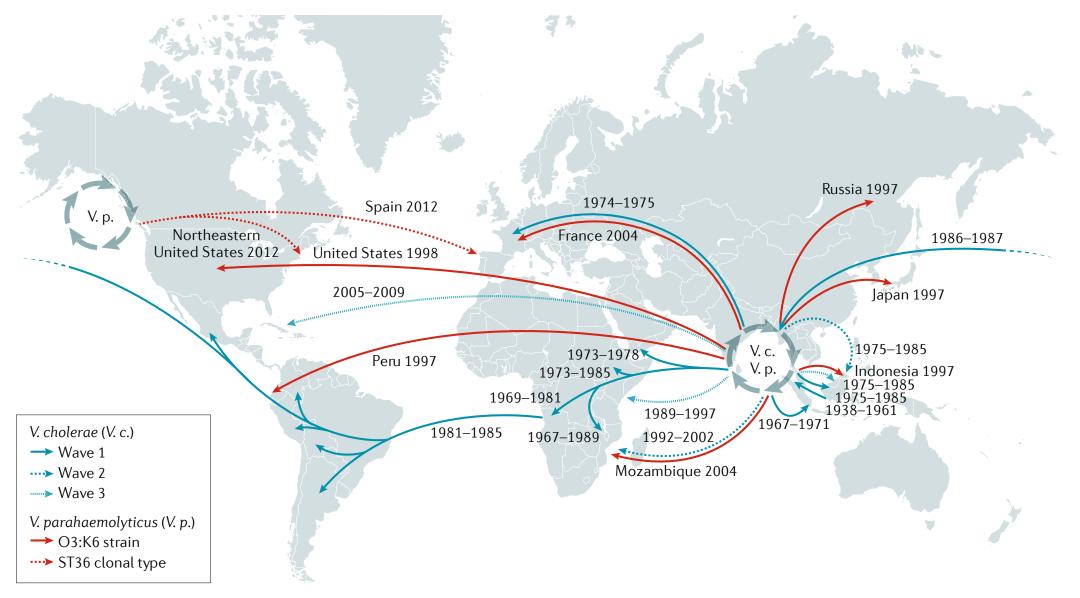
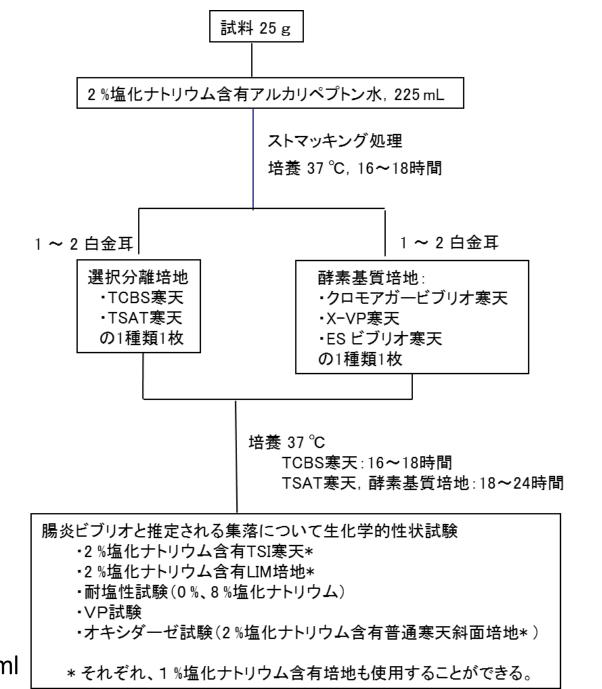
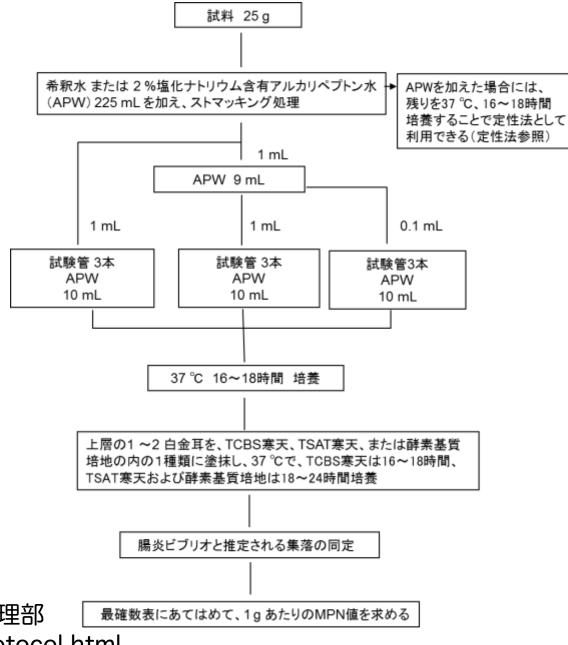

腸炎ビブリオパンデミック株の血清型分布

FIGURE 1 | Map showing the dissemination of clinical and environmental pandemic serovariants of *V. parahaemolyticus* occurring at a global scale. Serotypes identified in clinical isolates (black), environmental isolates (blue) and both in clinical and environmental isolates (green) are marked respectively.


Han C, Tang H, Ren C, Zhu X, Han D. Front Microbiol. 2016 Apr 22;7:567.

腸炎ビブリオ、コレラ菌パンデミック株の伝播


Baker-Austin C, J. Nat Rev Dis Primers. 2018 Jul 12;4(1):8.

腸炎ビブリオ試験法 (定性法) NIHSJ-06-ST4(20160729)

食品からの微生物標準検査法 国立医薬品食品衛生研究所 食品衛生管理部 http://www.nihs.go.jp/fhm/mmef/protocol.html

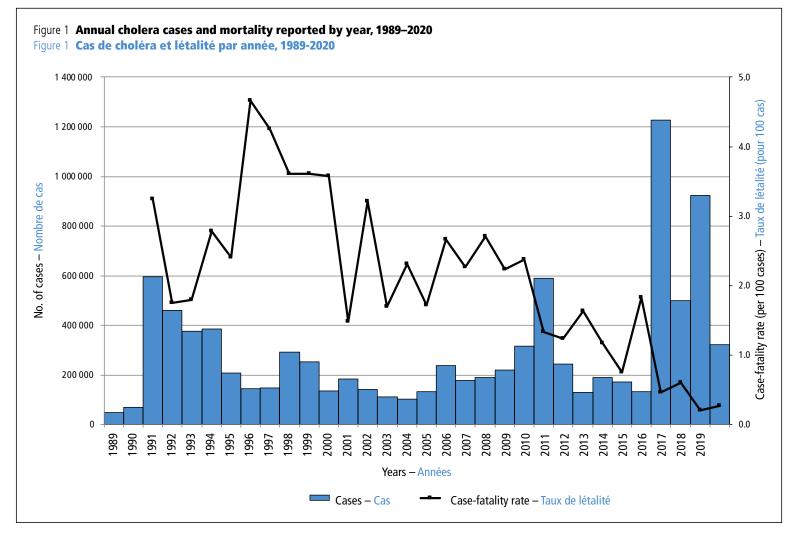
腸炎ビブリオ試験法 (定量法:最確数法) NIHSJ-07-ST4(20160729)

食品からの微生物標準検査法 国立医薬品食品衛生研究所 食品衛生管理部 http://www.nihs.go.jp/fhm/mmef/protocol.html

注)APW は、2%塩化ナトリウムを含有する。

ヒトの感染症からよく分離されるVibrio属菌及び類縁菌の主な生化学性状

	V. parahaemolyticus	V. cholerae	V. vulnificus	V. fluvialis/furnissii	V. alginolyticus	A. hydrophila
TCBS寒天培地上の集落の色	緑色	黄色	緑色	黄色	黄色	- (黄色)
テスト						
オキシダーゼ	<u>100</u>	<u>100</u>	<u>100</u>	<u>100</u>	<u>100</u>	<u>100</u>
インドール	98	99	97	85	85	85
VP	0	75	0	95	95	95
ブイヨンでの発育.						
NaCl 0%	<u>0</u>	<u>100</u>	<u>0</u>	<u>0</u>	<u>0</u>	<u>100</u>
NaCl 6%	99	53	65	96	100	-
NaCl 8%	80	1	0	71	100	-
NaCl 10%	0	0	0	0	69	-
リジン脱炭酸	<u>100</u>	<u>99</u>	<u>99</u>	<u>0</u>	<u>99</u>	<u>69</u>
アルギニン加水分解	<u>0</u>	<u>0</u>	<u>0</u>	<u>96</u>	<u>0</u>	<u>99</u>
オルニチン脱炭酸	<u>95</u>	<u>99</u>	<u>55</u>	<u>0</u>	<u>50</u>	<u>0</u>
ONPG	8	94	99	60	3	100
発酵:						
アラビノース	80	0	5	96	3	92
乳糖	1	7	<u>85</u>	3	0	-
マンニット	100	99	45	97	100	100
サリシン	3	3	<u>95</u>	0	8	-
白糖	1	<u>100</u>	<u>15</u>	<u>100</u>	<u>99</u>	<u>95</u>

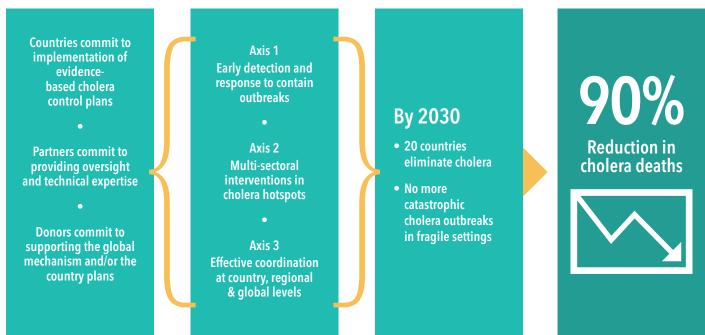

数字は陽性%を示す

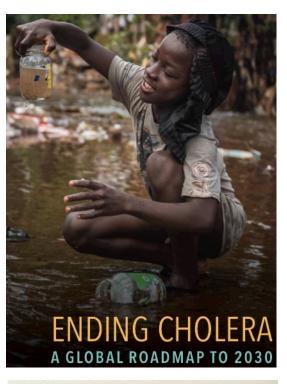
ヒトの感染症に関連する重要なVibrio属菌

Species		感染源		感染経路		臨床症状
Species	A介類 海水 真水 経口 創傷	創傷				
<i>V. cholerae</i> (01, 0139)	まれ	まれ	\bigcirc	\bigcirc	まれ	コレラ、胃腸炎、まれに創傷感染
<i>V. cholerae</i> (上記以外)	\bigcirc	\bigcirc	Х	\bigcirc	\bigcirc	胃腸炎、創傷、耳、原発性敗血症
V. parahaemolyticus	\bigcirc	まれ	Х	\bigcirc	\bigcirc	胃腸炎、創傷、まれに敗血症
V. vulnificus	\bigcirc	\bigcirc	Х	\bigcirc	\bigcirc	胃腸炎、創傷、敗血症
V. alginolyticus	Х	\bigcirc	Х	Х	\bigcirc	耳や創傷感染が多い、まれに敗血症
V. fluvialis	Х	\bigcirc	Х	\bigcirc	\bigcirc	胃腸炎、まれに耳、目や創傷感染、 敗血症
V. hollisae	\bigcirc	\bigcirc	Х	\bigcirc	Х	胃腸炎、創傷、まれに敗血症
V. mimicus	まれ	\bigcirc	Х	\bigcirc	\bigcirc	胃腸炎、まれに耳、目や創傷感染、 敗血症
V. metschnikovii	Х	\bigcirc	Х	恐らく	Х	胃腸炎、敗血症

Baker-Austin C, J. Nat Rev Dis Primers. 2018 Jul 12;4(1):8. (翻訳改変)

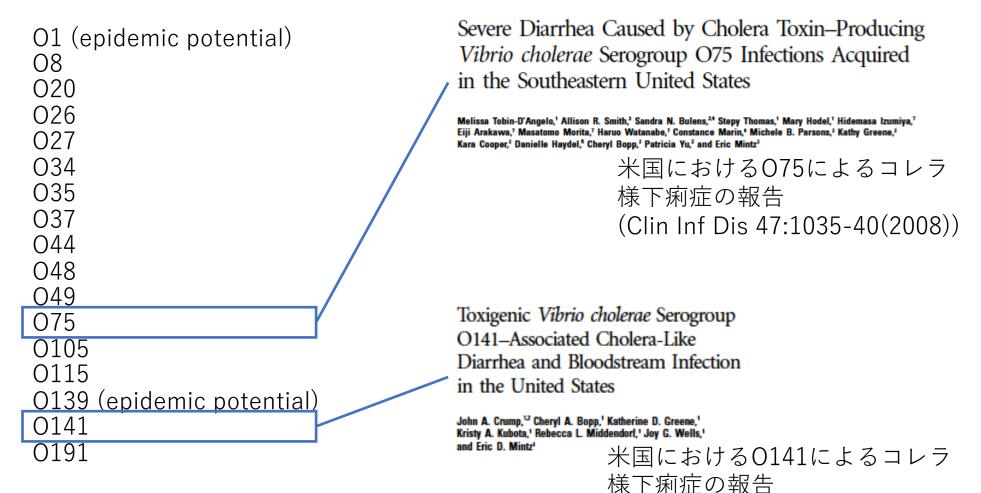
世界のコレラ発生状況-WHO(2021) 年次報告数 _{日本のコレラは2020年は1例}

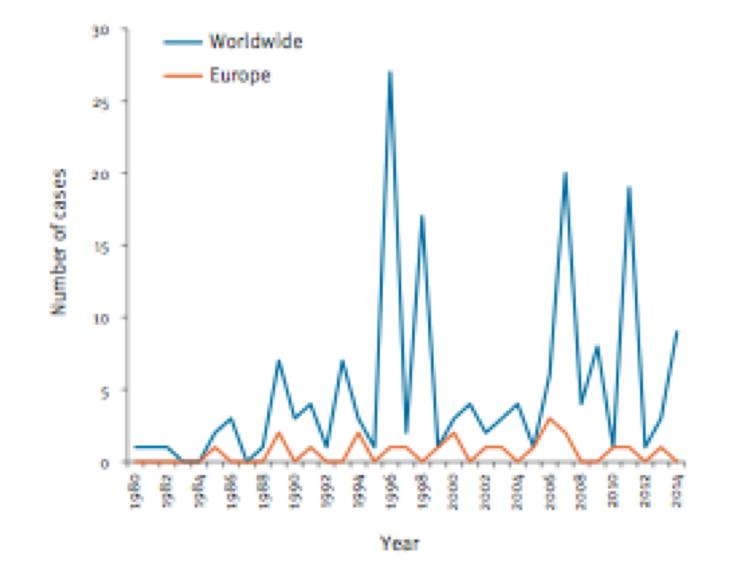



WHO, Wkly Epidemiol Rec 2021 37:96, 445-460

WHOのコレラ削減計画

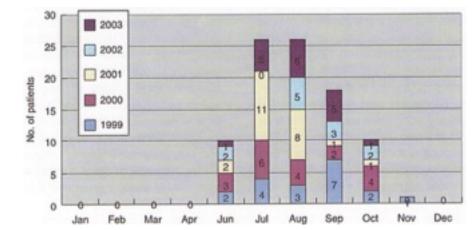
WHOの試算では、毎年世界で290万 人の感染者があり、95,000人の犠牲 者が出ていると推計している。 2030年までに死者数を9,500人に削 減することを目指している。

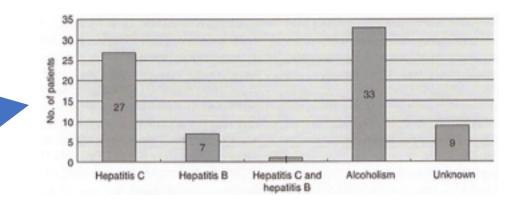

Figure 3: Theory of change of the *Global Roadmap*



コレラ毒素(CT)陽性V. cholerae non-01/non-0139

(J Inf Dis 187:866-8(2003))


V. cholerae non-01/non-0139による敗血症事例



日本のV. vulnificus感染症の疫学調査(1999-2003)

国内の1693の救急病院のアンケートに基づく調査結果

V. vulnificus感染者(n=94)					
性別(男性/女性)	78/16				
平均年齢	60.62				
敗血症型	68(72.3%)				
創傷感染型	21(22.3%)				
消化器型	5(5.3%)				
	創傷感染型	敗血症型			
肝機能障害	16(76.2%)	61(89.7%)			
肝硬変	7(33.3%)	46(67.6%)			
高血圧	0	2			
リウマチ	1	0			
白血病	0	3			
腎障害	0	1			
糖尿病	3(14.3%) 9(13.2%)				
痛風	0 3				
なし	2 1				

Inoue Y, et al. J Dermatol. 2008 Mar;35(3):129-39.